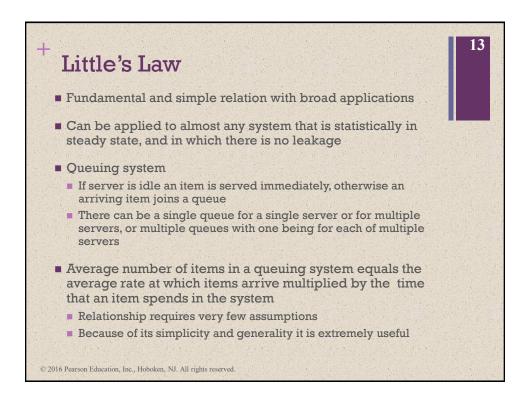
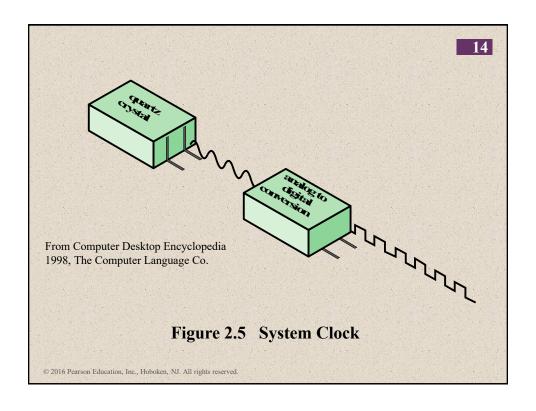
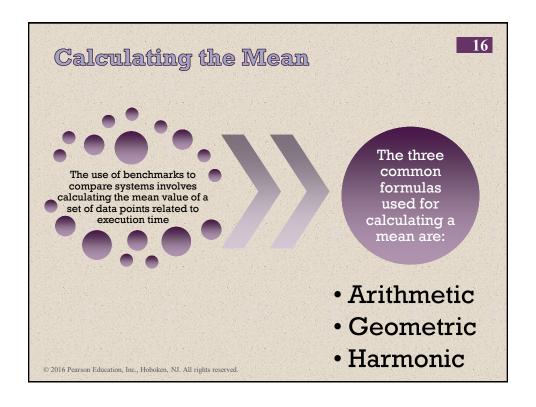
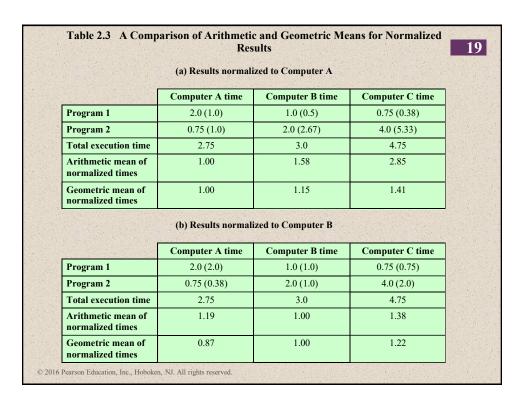
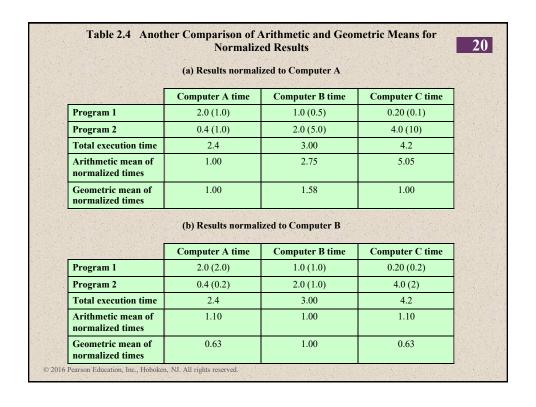

Problems with Clock Speed and Logic Density Power Power Power density increases with density of logic and clock speed Dissipating heat RC delay Speed at which electrons flow limited by resistance and capacitance of metal wires connecting them Delay increases as the RC product increases As components on the chip decrease in size, the wire interconnects become thinner, increasing resistance Also, the wires are closer together, increasing capacitance Memory latency Memory speeds lag processor speeds









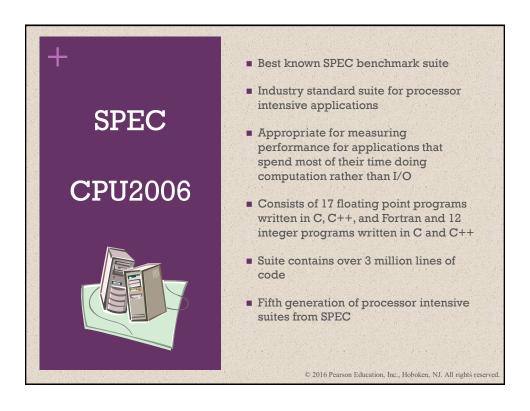

	I_c	p	m	k	τ
Instruction set architecture	x	X			
Compiler technology	X	X	X		
Processor implementation		X			X
Cache and memory hierarchy				X	X
	erformance Fa		d Csto-	a Materila	

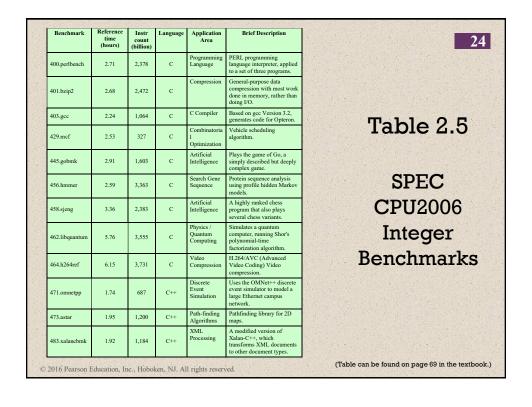
■ An Arithmetic Mean (AM) is an 17 appropriate measure if the sum of all the measurements is a meaningful and Arithmetic interesting value ■ The AM is a good candidate for comparing the execution time performance of several systems For example, suppose we were interested in using a system for large-scale simulation studies and wanted to evaluate several Mean alternative products. On each system we could run the simulation multiple times with different input values for each run, and then take the average execution time across all runs. The use of multiple runs with different inputs should ensure that the results are not heavily biased by some unusual feature of a given input set. The AM of all the runs is a good measure of the system's performance on simulations, and a good number to use for system comparison. ■ The AM used for a time-based variable, such as program execution time, has the important property that it is directly proportional to the total time ■ If the total time doubles, the mean value doubles © 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

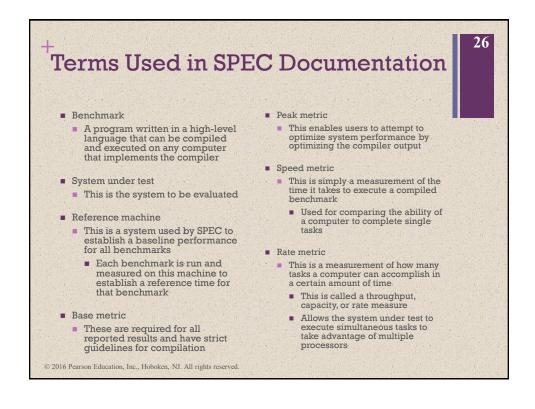
	Computer A time (secs)	Computer B time (secs)	Computer C time (secs)	Computer A rate (MFLOPS)	Computer B rate (MFLOPS)	Computer C rate (MFLOPS)	18
Program 1 (10 ⁸ FP ops)	2.0	1.0	0.75	50	100	133.33	Table 2.2
Program 2 (10 ⁸ FP ops)	0.75	2.0	4.0	133.33	50	25	A Comparison
Total execution time	2.75	3.0	4.75				of Arithmetic and
Arithmetic mean of times	1.38	1.5	2.38				Harmonic Means for
Inverse of total execution time (1/sec)	0.36	0.33	0.21				Rates
Arithmetic mean of rates				91.67	75.00	79.17	
Harmonic mean of rates				72.72	66.67	42.11	

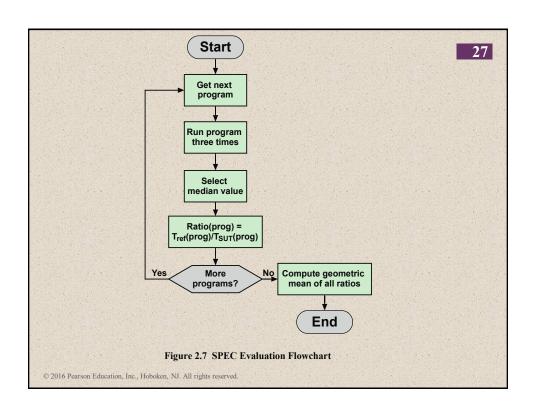
Benchmark Principles

- Desirable characteristics of a benchmark program:
 - 1. It is written in a high-level language, making it portable across different machines
 - It is representative of a particular kind of programming domain or paradigm, such as systems programming, numerical programming, or commercial programming
 - 3. It can be measured easily
 - 4. It has wide distribution


© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.


System Performance Evaluation Corporation (SPEC)


- Benchmark suite
 - A collection of programs, defined in a high-level language
 - Together attempt to provide a representative test of a computer in a particular application or system programming area
- SPEC
 - An industry consortium
 - Defines and maintains the best known collection of benchmark suites aimed at evaluating computer systems
 - Performance measurements are widely used for comparison and research purposes


© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

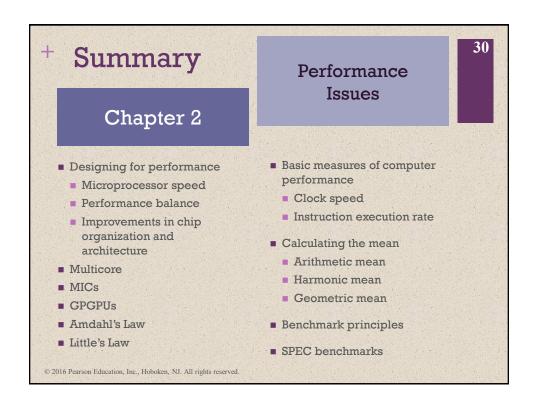

Benchmark	Reference time (hours)	Instr count (billion)	Language	Application Area	Brief Description	25
410.bwaves	3.78	1,176	Fortran	Fluid Dynamics	Computes 3D transonic transient laminar viscous flow.	
416.gamess	5.44	5,189	Fortran	Quantum Chemistry	Quantum chemical computations.	
433.milc	2.55	937	С	Physics / Quantum Chromodynamics	Simulates behavior of quarks and gluons	
434.zeusmp	2.53	1,566	Fortran	Physics / CFD	Computational fluid dynamics simulation of astrophysical phenomena.	Table 2.6
435.gromacs	1.98	1,958	C, Fortran	Biochemistry / Molecular Dynamics	Simulate Newtonian equations of motion for hundreds to millions of particles.	Table 2.0
436.cactusAD M	3.32	1,376	C, Fortran	Physics / General Relativity	Solves the Einstein evolution equations.	
437.leslie3d	2.61	1,273	Fortran	Fluid Dynamics	Model fuel injection flows.	SPEC
144.namd	2.23	2,483	C++	Biology / Molecular Dynamics	Simulates large biomolecular systems.	
147.dealII	3.18	2,323	C++	Finite Element Analysis	Program library targeted at adaptive finite elements and error estimation.	CPU2006
450.soplex	2.32	703	C++	Linear Programming, Optimization	Test cases include railroad planning and military airlift models.	Floating-Poin
453.povray	1.48	940	C++	Image Ray-tracing	3D Image rendering.	Benchmarks
454.calculix	2.29	3,04`	C, Fortran	Structural Mechanics	Finite element code for linear and nonlinear 3D structural applications.	Delicilliaiks
459.GemsFDT D	2.95	1,320	Fortran	Computational Electromagnetics	Solves the Maxwell equations in 3D.	
465.tonto	2.73	2,392	Fortran	Quantum Chemistry	Quantum chemistry package, adapted for crystallographic tasks.	
470.lbm	3.82	1,500	C	Fluid Dynamics	Simulates incompressible fluids in 3D.	
481.wrf	3.10	1,684	C, Fortran	Weather	Weather forecasting model	
482.sphinx3	5.41	2,472	C	Speech recognition	Speech recognition software.	(Table can be found on page 70

Table 2.7 Some SPEC CINT2006 Results (a) Sun Blade 1000						
Benchmark	Execution time	Execution time	Execution time	Reference time	Ratio	
400.perlbench	3077	3076	3080	9770	3.18	
401.bzip2	3260	3263	3260	9650	2.96	
403.gcc	2711	2701	2702	8050	2.98	
429.mcf	2356	2331	2301	9120	3.91	
445.gobmk	3319	3310	3308	10490	3.17	
456.hmmer	2586	2587	2601	9330	3.61	
458.sjeng	3452	3449	3449	12100	3.51	
462.libquantum	10318	10319	10273	20720	2.01	
464.h264ref	5246	5290	5259	22130	4.21	
471.omnetpp	2565	2572	2582	6250	2.43	
473.astar	2522	2554	2565	7020	2.75	
483.xalancbmk	2014	2018	2018	6900	3.42	

(b) Sun Blade X6250							
Benchmark	Execution time	Execution time	Execution time	Reference time	Ratio	Rate	
400.perlbench	497	497	497	9770	19.66	78.63	
401.bzip2	613	614	613	9650	15.74	62.97	
403.gcc	529	529	529	8050	15.22	60.87	
429.mcf	472	472	473	9120	19.32	77.29	
445.gobmk	637	637	637	10490	16.47	65.87	
456.hmmer	446	446	446	9330	20.92	83.68	
458.sjeng	631	632	630	12100	19.18	76.70	
462.libquantum	614	614	614	20720	33.75	134.98	
464.h264ref	830	830	830	22130	26.66	106.65	
471.omnetpp	619	620	619	6250	10.10	40.39	
473.astar	580	580	580	7020	12.10	48.41	
483.xalancbmk	422	422	422	6900	16.35	65.40	

